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Abstract: - Finding connected components of a graph is a fundamental problem in graph theory which arises in 

many different applications including data mining and network analysis. By increasing popularity of social 

networks and information systems, scale of real world graphs have increased to billions of nodes and edges. 

Thus, finding connected components of large scale graphs turned to be a computationally challenging task. 

Because of this, in recent years, there has been some works addressing this problem using the well-known 

MapReduce distributed large scale data processing framework. However, they do not have acceptable 

performance and sstill tere is great potential for imporvments. In this paper, we introduce a new approach for 

finding connected components of large scale graphs using MapReduce framework. Based on the results of the 

experiments on real-world datasets, we show that, by using the new algorithm, significant performance 

improvements have been gained. We also explain that the main idea of our algorithm is based on a general theory 

for effective utilization of computational resources provided by nodes in a MapReduce cluster to reduce 

communication and IO load. 
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I. INTRODUCTION 
Large scale graphs are popular in modern information systems such as social networks, scientific 

networks, e-commerce systems, web graphs, and etc which contain graphs of billion scales. Such graphs should 

be analyzed using graph procesing data mining methods in order to extract valuable information such as 

community structure of a social network, trend prediction in an academic research field, and ranking web pages 

to name a few. One of the basic algorithms used in graph mining is finding connected components of a graph 

which also has some other forms such as S-T Connectivity. There have been many sequential algorithms to find 

connected components of graphs, but finding connected components of real world graphs  has became a 

challenging task in recent years due to their very large scale size. One approach to tackle this challenge is to use 

parallel and distributed computing. 

Many parallel and distributed approaches have been proposed to solve this problem [1], [4], [6], [7] and 

[8]. Especially, some algorithms are designed using MapReduce distributed computing framework, which in 

recent years has been extensively used in large scale data processing. However, these MapReduce based 

algorithms still has potential to significant optimizations. In this paper we introduce a new algorithm which is 

essentially an improvement over PEGASUS, a popular MapReduce algorithm for finding connected components 

of large scale graphs. The new algorithm reduces amount of intermediate MapReduce data and the number of 

iterations that PEGASUS takes to complete. According to experiments, the new algorithm significantly 

outperforms the state-of-the-art algorithms. 

In the rest of this paper, section 2 introduces MapReduce framework. Then, section 3 analyses the 

related works and presents motivations for the new algorithm. Section 4 introduces the new MapReduce 

algorithm for finding connected components, followed by the experimental results and discussion on them in 

section 5. We conclude the paper and give some directions for future work in section 6. 

 

II. THE MAPREDUCE COMPUTATIONAL MODEL 
MapReduce has emerged as a new paradigm in distributed large scale data processing in recent years 

[2]. Scalability, load balancing, and fault tolerance are its most important characteristics. It has been used to 

solve computationally challenging problems in many fields, for example, large scale graph processing problems 

such as PageRank and maximum clique enumeration problem [4], [9]. MapReduce framework increases scale by 

leveraging large number of loosely synchronized machines each processing a fraction of data in parallel.  

MapReduce consists of two functions, Map and Reduce. The Map function gets some key value pairs as 

input and processes them to produces new key value pairs as intermediate output. Then the Reduce function 

processes the intermediate key value pairs to produces output key value pairs. Between Map and Reduce phases 
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the shuffle phase sends all values associated with a key to a same reducer. The shuffle phase is the only 

synchronization required between Map and Reduce phases and all tasks during each phase work independently. 

The MapReduce framework assumes that input data is split over a distributed cluster file system and 

then executes the Map function on each split. Amount of intermediate data generated between map and reduce 

phases is a bottleneck for performance and scalability. Simply, because it should be sorted using an external 

sorting algorithm and then sent to the right reducer through the network. As the amount of intermediate data 

increases, I/O and communication load also increase. Therefore, reducing amount of intermediate data would 

result in significant performance improvements. In addition, finding connected components using MapReduce is 

an iterative task and reducing number of iterations also would result in performance improvement. In the next 

section we present our approach which decreases amount of intermediate data and number of iterations. 

 

III. RELATED WORKS AND MOTIVATIONS 
There have been some works which developed MapReduce algorithms to find connected components of 

large scale graphs [1], [3], [6], [7]. Among them, two algorithms are most successful and popular and we will 

describe them in detail. These algorithms are based on some kind of label propagation. They assign a numerical 

component ID to each node and neighbor nodes of the graph exchange their component IDs until each node gets 

its right component ID. Our new algorithm also is based on this label propagation approach and actually our 

work will be an improvement on computational aspects of this approach. Before describing our algorithm, first 

we introduce two mentioned algorithms. 

 

3.1. Related Works 

The most popular work in this area is done by Kang et al [3]. Their MapReduce algorithm, PEGASUS, 

is showed in the code below. They have introduced a MapReduce model of matrix-vector multiplication to 

implement their algorithm, but their implementation method is not our concern at this work. PEGASUS initially 

sets component ID of each node to be the node’s ID. Then in map phase of the following iterations, each node 

sends its component ID to its neighbors. In the reduce phase each node sets its component ID to smallest 

component ID among those IDs it received and its ID set in the previous iteration. The algorithm iterates until 

component ID of none of the nodes changes. 

In [6] two new algorithms are introduced which aim at reducing the number of rounds in finding connected 

components using MapReduce. Based on the experiments presented in their paper, one of their algorithms, 

named as Hash-to-Min, has the best performance regarding run time. In the initialization step, the algorithm 

assumes that each node and its neighbors constitute a connected component. In map phase of the following 

iterations, each node sends IDs of all members of the component associated with it to the member with smallest 

ID and sends the smallest node ID to other nodes. Then in the reduce phase, each node receives the members 

associated with it and stores it. The algorithm terminates when all nodes are associated with the node with 

smallest ID in the component which they belong to.  Therefore, at each iteration, all nodes of a component 

should be sent to the reducer which processes the member of the component with smallest ID. This would cause 

unbalanced computational and communication load to be directed to some reducers. In the case of existence of 

huge components, which is popular in real world graphs [6], there would be significant lack of performance and 

scalability. However, they also have devised some solutions to smooth this problem. 

Seidl et al [7] also have introduced an algorithm called CC-MR which is essentially based on the same approach 

as of Hash-to-Min. They have also devised an elegant solution to counter the intrinsic unbalanced load 

distribution associated with the approach. Moreover, they have released an open-source version of their 

implementation. However, this approach still does not have satisfying performance in case of large scale graphs. 

 

 
 

Figure 1 The PEGASUS algorithm for fiinding connected components of a graph using MapReduce 
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3.2 Motivations 

As mentioned, reducing amount of intermediate data and number of iterations will cause significant 

performance achievements. Thus we concentrate on reducing I/O and network communication load of PEGAUS. 

In the mean while our approach would decrease the number of iterations it take to find connected components of 

a graph. As the experiments shows, the new algorithm generates less intermediate data and terminates in less 

number of iterations than PEGASUS. Further the new algorithm shows much better performance than CC-MR 

and Hash-to-Min. First we show how PEGASUS operates on a graph. As an example of the algorithm’s 

procedure, we describe its operation over the graph presented in  

 

 

 
 

Table 1  Running PEGASUS on the Graph in Fig. 2. 

Node ID 0 1 2 3 4 5 6 7 8 9 

Initial Com ID 0 1 2 3 4 5 6 7 8 9 

Comp ID after 1
st
 0 1 1 2 0 4 5 6 6 8 

Comp ID after 2
nd

 0 1 1 1 0 0 4 5 5 6 

Comp ID after 3
rd

 0 1 1 1 0 0 0 4 4 5 

Comp ID after 4
th

 0 1 1 1 0 0 0 0 0 4 

Comp ID after 5
th

 0 1 1 1 0 0 0 0 0 0 

 

Fig. 1. Suppose that at each iteration there are two mapers and one reducer and nodes 0 to 4 will be 

processed by first maper and the other nodes by the second maper. As presented in Table 1, PEGASUS initially 

sets the component ID of each node to be same as its node ID. Then in map phase of the first iteration node 6, for 

example, sends its component ID to all its neighbor nodes, which is 3, 5, and 8. In the reduce phase, node 6 also 

receives component ID of its neighbors and sets its component ID to be 5 which is the smallest ID among those it 

received and its current component ID. Component IDs of other nodes after the first iteration are presented in 

Table 1.  

 

IV. MEMORYCC: THE NEW FAST ALGORITHM 
In MapReduce each map and reduce task processes its input records one by one. Each record has two 

parts, key and value. In the Fig. 1 it has shown that a node’s ID is constitutes the key part of a record and 

component ID plus adjacency list of the node constitutes the value part. As an illustration of how map function 

operates on an input record, when in the second iteration the second maper receives the record <5, (0,{4,6})> it 

produces the four new records as intermediate data: <4, 0>, <5, 0>, <6, 0>, <5, {4, 6}>. By the first and third 

record it sends current component ID of node 5 that is 0, to the 4 and 6. By the second record it preserves the 

current component ID of node 5 because in reduce phase it may not receive any smaller ID from its neighbors. 

And by the last record the algorithm maintains the graph structure to be used in the following iterations. In 

reduce phase of the second iteration node 6 will set its component ID to 0 because it is the smallest ID it 

receives. Then in the map phase of the third iteration the node 6 will tell to is neighbors that its component ID is 

0 which causes them to set their component Id to 0 in the reduce phase of the third iteration. The algorithm will 

continue in the same way until it terminates. 

As you can see, in map phase of each iteration each record is processed by a map task and the task does 

not have any assumption about the other records which it processes at the same iteration. But, in MapReduce 

each map task could firt load all of its input records to a hash map and then access to the data structure during its 

lifetime [5]. We use this feature to improve PEGASUS algorithm. Now we describe our method step by step. In 

the remainder of this paper we refer to our method as MemoryCC. 

The initialization step of MemoryCC is same as that of PEGASUS. At each iteration of MemoryCC, 

first each maper loads all of its input records into a hash map data structure called SubGraph. In addition, it 

separates adjacency list of each into two parts. Part one contains those adjacent nodes which are processed by the 

same maper and the second part contains those adjacent nodes which are processed by other mapers. We call the 

first part internal adjacent nodes and the second part, the external adjacent node. Suppose that using two mapers 

Figure 2 A graph with two connected components. 
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and one reducer we run MemoryCC over the graph in Fig. 1. At each iteration, the first maper processes nodes 

with IDs 0 to 4 and the second maper processes nodes with IDs 5 to 9. After loading input records to SubGraph, 

each mapers starts the main part of its procedure. In contrast to PEGASUS, each maper has simultaneous access 

to all of its input records. For example, when the first maper processes node 0, it has access to node 4 and thus, 

does not emit the record <4, 0> to tell its component ID to node 4. Instead, it tell directly to node 4 that its 

neighbor’s component ID is 0. This means that neighbor nodes which are processed by the same maper do not 

need to send their component ID to each other through the reduce phase. Therefore, because 0 is smaller than 

previous component ID of node 4, that is 4, the maper will update component ID of node 4 to 0. Each maper 

applies this procedure on all its internal nodes and if a node has an internal neighbor with a smaller component 

ID, the maper replaces the node’s component ID with its neighbor’s component ID. This procedure will repeat 

until component ID of none of the internal nodes updates.  

In contrast to PEGASUS, when generating intermediate records in MemoryCC, current component ID 

of each internal node is updated during the map phase. In addition, the maper sends to each external node the 

smallest component ID among the component IDs of the node’s neighbors among internal nodes. Outputs of the 

first and second mapers are shown in Table 2. The reduce function of MemoryCC will be same as the reduce 

function of the PEGASUS. Table 3 presents the final output of MemoryCC after each iteration. As you can see, 

MemoryCC finds connected components of the graph in Fig. 1 in two rounds while PEGASUS takes five 

iterations to complete. 

 

Table 2 Output of Mappers in the First Iteration of Execution of MemoryCC on the Graph of Fig. 2. 

Output records of the first maper Output records of the second maper 

<0, 0 >, <0, {4}>, <1, 1>, <1, {2}>, <2, 1 >, <2, 

{1, 3}>, <3, 1 >, <3, {2}>, <4, 0 >, <5, 0 >, <4, 

{0, 5}> 

<5, 5 >, <4, 5 >, <5, {4, 6}>, <6, 5 >, <6, {5, 7, 

8}>, <7, 5 >, <7, {6}>, <8, 5>, <8, {6, 9}>, <9, 

5>, <9, {8}> 

 

Table 3 Output of each iteration when running MemoryCC on the graph of Fig. 2. 

 

 

 

 

 

As a general description of MemoryCC, it partitions the input graph to sub graphs and each maper loads 

the sub graph associated with it into a hash map data structure called SubGraph. Thanks to this, at each iteration 

of MemoryCC, every maper finds connected component of nodes in the sub graph associated with it. As an 

illustration, in the example of the graph of Fig. 1, at the first iteration, the first maper finds two connected 

components in the first sub graph. One consisted of nodes 0 and 4 and the other consists of nodes 1, 2, and 3 with 

0 as and 1 set as component IDs respectively and the second maper detects that the whole sub graph associated 

with it, is a connected component with 5 as component ID. Then each connected component sends it’s ID to 

external nodes which is neighbor with. This makes it possible to connected components found on different 

mapers to merge in reduce phase if they are connected through some edge. This idea is essentiall same as the 

idea introduced in [10]. The next section presents the experimental results and discussion about them. 

 

V. EXPERIMENTS AND DISCUSSION 
This section presents experiments and discussion about benchmarking MemoryCC and other algorithms 

against real world data sets. All of the experiments are done on a Hadoop cluster consisting of 8 nodes connected 

to each other through a one gigabit Ethernet LAN, each with 8 processing cores and 16 gigabytes of memory. 

Statistics of the data sets we have used are presented in Table 4. All datasets are available through the web page 

of Stanford Network Analysis Project (SNAP). We have implemented our algorithm on Apache Hadoop which is 

an open-source implementation of MapReduce framework. For PEGASU and CC-MR we have used their open-

source and free implementations respectively. 

 

 

 

Node ID 0 1 2 3 4 5 6 7 8 9 

Initial Com ID 0 1 2 3 4 5 6 7 8 9 

Comp ID after 1
st
 0 1 1 1 0 0 5 5 5 5 

Comp ID after 2
nd

 0 1 1 1 0 0 0 0 0 0 
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VI.  
 

 

 

 

 

 

Table 4 Statistic of data sets used in experiments. 

Dataset Nodes Edges Diameter Size in MB 

com-amazon  334863 925872 44 14.2 

com-DBLP 317080 1049866 22 15.3 

com-YouTube 1134890 2987624 21 44.5 

as-Skitter 1696415 11095298 25 154.1 

com-LiveJournal  3997962 34681189 18 507.8 

com-Orkut  3072441 117185083 8 1740.8 

 

5.1 Memory Usage 

As we described, each maper of MemoryCC loads the sub graph associated with it into memory. At first 

this may be seemed problematic due to its high memory usage, but even in clusters made up of commodity 

hardware, each node usually has up to many gigabytes of memory per processing core. In addition, real world 

data sets usually are of gigabytes in size and whole of them could be loaded even into memory associated with 

one maper. For example, the largest data set we have used is com-Orkut which is 1.7 gigabytes. Considering that 

two gigabytes of memory is available for each maper in our cluster, even whole of com-Orkut data set could be 

load into memory of one maper. In addition, since we would divide data sets into sub graphs, it is clear that size 

of sub graphs would be much less than size of the data set itself. For example, in our cluster, we are able to 

divide each data set among 52 mapers each with to up to two gigabytes of memory which means we are able to 

process data sets as large as 100 gigabytes. Furthermore, as size of real world data sets grows, memory 

technology is also advances to support larger amounts of memory per processing core. So it seems neither today 

nor would in the future available memory be a problematic issue for performance of MemoryCC. 

 

5.2 Performance 

Our main approach in developing a new MapReduce algorithm was reducing amount of intermediate 

data and number of iterations. For example, in case of the graph shown in Fig. 1, MemoryCC completed in half 

the iterations PEGASUS took to terminate. In addition by loading the sub graphs into memory of mapers the 

nodes inside mapers do no need to communicate through the reduce phase and they directly share their 

component ID with each other at the map phase. 

Moreover, in case of external nodes, in contrast to PEGASUS, in MemoryCC a maper just sends one message to 

each of its external nodes. Consequently these result in reduction in amount of intermediate data. Fig. 4 presents 

amount of intermediate data generated by MemoryCC, PEGASUS, and CC-MR when executed over data sets of 

Table 4.  As we mentioned in the previous sections, our algorithm actually tries to improve PEGASUS. As 

Map  

Hashmap subgraph<key,value> 

Input <Key, Value> : <(node n, Comp IDn), adjacency list of n> 

      subgraph.put(node n, <Comp IDn , adjacency list of n>) 

     while (any component ID updates) do 

          for each node n in subgraph do  

               for each node i  which is neighbor of n do 

                   if i is in subgraph &    

     Comp IDi is smaller than Com IDn do 

          replace Comp IDi with Com IDn  

     for each node i in subgraph do 

          emit <i, Com IDi > 

          emit <i, adjacency list of i > 

     for each node i not in subgraph  

          & has at least a neighbor in subgraph do 

          emit <i, smallest Com ID of i’s neighbors in subgraph >  

  

Reduce  

Input<Key, Value> = <node n, received IDs and adjacency list of n > 

     component IDn = smallest id received 

     emit < (n, component IDn) , adjacency list of n > 

Figure 3 MemoryCC: The Proposed Algorithm for Computation of Connected 

Components using MapReduce. 
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showed in Fig. 4a, the intermediate data generated by MemoryCC is four to twenty times less than PEGASUS 

and three to ten times less than CC-MR. So MemoryCC significantly reduces amount of intermediate data. 

 
Figure 4 Amount of intermediate data produced by different algorithms. 

 

In Fig. 5 number of iterations that different algorithms take to complete when applied over datasets of 

Table 4 is presented. As you can see, in three of the data sets, that is Amazon, DBLP, and YouTube, MemoryCC 

just takes one iteration to complete. Not surprisingly, this is because of the fact that these data sets have very 

small size and MemoryCC partitions them to no more than one sub graph. This means that each of these data sets 

is processed just by one mapper and this mapper loads whole of the data sets into its memory and then founds 

connected components of them at the first iteration. On other data sets MemoryCC approximately completes in 

half the number of iterations that PEGASUS takes to complete. In comparison to CC-MR, also MemoryCC takes 

smaller number of iterations except the case of LiveJournal data set, on which both algorithms finish in same 

number of iterations.  

 

 
Figure 5 Number of iterations that different algorithms take to terminate. 

 

Based on the experiments, we have proved that MemoryCC generates much less intermediate data, and 

takes less number of iterations to complete than the state-of-the-art algorithms. These observations confirm that 

when applying over larger data sets MemoryCC, would be more scalable than the other algorithms. In addition, 

reduction in amount of intermediate data and number of iterations cause significant runtime enhancement. Fig. 6 

shows runtime of MemoryCC in comparison to other algorithms when benchmarked using data sets of Table 4. 
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Figure 6 Runtime of different algorithms. 

 

Results show that MemoryCC is up to ten times faster than PEGASUS and CC-MR .It could be proved 

that the communication complexity of the MemoryCC is O(V), where V is the number of vertices. Since the 

communication and intermediate data are the most time consuming part of MapReduce algrithms, it is 

predictable that the runtume of the MemoryCC shoud be in direct relation with the number of nodes. This is 

shown  in Fig. 7 Because the quantity of runtime is very small in comarison to the number of nodes, in this 

diagram the run time is multiplied by 10000 to scale and shift the runtime curve. 

 

 
Figure 7 The relationship between runtime and number of nodes. 

 

VII. CONCLUSION 
In this paper, we introduced a new algorithm to speed up large scale connected component detection 

using MapReduce framework. Our approach was based on partitioning a graph into sub graphs and then 

iteratively finding connected components of each sub graph separately in map phase and merging them in reduce 

phase. We named the new algorithm MemoryCC. MemoryCC is based on the idea of PEGASUS algorithm to 

finding connected components and improves it through reducing amount of intermediate data and number of 

iterations it take to complete. MemoryCC do this by finding connected components of each sub graph in a maper 

and in contrast to PEGASUS, does not exchange data among internal nodes of a maper through the reduce phase. 

In the mean while, this approach reduces the number of iterations. Based on experimental results, our algorithm 

outperforms the state-of-the-art algorithms by working up to ten times faster than them. 
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Although we have shown that MemoryCC has much better performance than the available algorithms, there are 

some issues which could be worked on in the future. Especially, time and space complexity of MemoryCC could 

be carefully analyzed and compared with that of other algorithms. In addition MemoryCC seems much more 

scalable than other algorithms but it is necessary to prove this fact based on theory and more experiment. 

Furthermore, it seems that partitioning input graphs among mapers may be beneficial if applied to many other 

graph processing algorithms. Thus, as the future work we concentrate on possibility of improving other 

MapReduce based graph processing algorithms using the approach used here in designing MemoryCC. 
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